体験授業のお申し込みはこちら
お子様に合った教室かどうか確かめてみてください。
そろばん塾ピコ講師の平山です。
数教室を回り、様々な考え・様々なタイプの子を見てきた経験から、一般論でない、役に立つ現場視点の情報を配信していきます。
前回は6級の内容を紹介しましたが、理解はできましたでしょうか。
それを確実に習得した上で初めてチャレンジ出来る5級、間違っても飛び級などは絶対に出来ませんので、6級が如何に大事か、というところは心に留めておきましょう。
問題数、合格点は6級にならい、300点満点のうちの7割(210点)以上で合格です。
掛け算 20問100点満点(1問5点)
割り算 20問100点満点(1問5点)
見取り算 10問100点満点(1問10点)
さて、5級の内容です。
見取り算は4桁&3桁、15口の足し算引き算を行います。
こちらも1問につき、6級なら約40回の足し引き→5級は約60回と1.5倍になりますので、基礎が大事です。
指を動かす回数が多ければ多いほど、やはり時間は無くなるので、急がなくてはならず、早い判断と正確性が求められる、と言った具合です。
そして、ここでも桁のバラつきはなかなかの曲者です。特に6005とか406とか間に0が入っているものは間違えやすく、1度のミスが検定ではかなりの時間ロスにつながりやすく、練習の時から常に意識することが必要です。
掛け算は3桁×3桁(もしくは2桁×4桁)です。
九九と足し算の積み重ねで掛け算を行っていきますが、基本的に9回(もしくは8回)行わなくてはなりません。6級の6回(2桁×3桁)に対して、9回になりますので、作業量の増加は3回。7級(4回)から6級(6回)のそれよりも増加するわけです。
という事で、こちらもますます基礎が大事になってくる5級というところでしょう。
そして後述しますが、今まで習ってきたものを捨てて、新たな技術を身に付けるべき時期が到来するのです。
5級では掛け算・割り算で“片落とし”というものにチャレンジします。
今までは掛ける(割る数)数、掛けられる(割られる)数の両方を入れてきましたが、左側の掛ける数を入れずに、片方の数のみ入れて計算を行います。
片方入れない=片落とし、と言うわけです。
下記の動画(57×241=13737)で比べてみますが、明らかに片落としの方が早いです。ここで慣れておけば、この後、級を取っていくのに有利に働くことは間違いありません^^
※両方入れる方法の名前はついておりませんので、分かりやすい様に両置きとしています
(両置き動画)
(片落とし動画)
※実際は倍くらいの速度でやるものですが、そうすると何をやっているか見えないので速度を落としています^^;
※両方とも入れない両落とし、というものもありますが、いわば高等テクニックなので、基礎を重視するピコでは教えておりません。実は片落としと計算の順番も違いますので、途中で別のものに移行するのは不可能に近い(時間が掛かりすぎる)です。(過去経験あり)
そして、今現在ピコで5級を習っていても両方入れている、と言う子は一定数います^^;
どうしてもなじめない、上手く出来ない。なので、子どもの気持ちを汲み取って敢えてやらない、と言う場合もありますので、そこはご了承くださいね。
つい先日、片落としは上手くいかないので絶対にやりたくない、と言う子が日商検定2級に合格したケースもありました。だいぶ前の話ですが、1級に合格したケースもあります。やらないなら、やらないと腹をくくり、迷わずにそれをとことん貫く事も大事なのかもしれません^^
5級の割り算は主に5桁÷3桁ですが、前回習得したであろう“割り戻し”は当たり前の様に常用することが求められます。
が、なにせ割る回数も多いので、割り戻しばかりしていては時間が短縮できず、一向に合格への道が見えてきません。そこで少しずつ実践しなくてはいけないのは“割り暗算”です。
商を立てる際に、事前に暗算で商をなるべく近いところまでもっていく事が出来るかどうか、がこの5級のポイントです。
まあ、力技で受かってしまう子もいるのですが…、その後がきついですよね^^;
さて、割り暗算を使うとは具体的にどういうことなのか説明します。
14352÷184を計算します。
先に言っておきますが答えは78です。
通常、まずは14と1での商立てをして9と入れ、“割り戻し”をしていくのですが、
その際に少し先を見越して143と18で割り暗算を使って商立てをします。
そうすると初めの商は7(18×7=136)と出てきますので、9→8→7と“割り戻し”をする分の時間が省略できる、という事です。
5級からは割り戻しの進化系?大還元が出現します。
これをマスターしておかないとこの先には進めません。
“割れそうで割れない”
また
”割り暗算も通用しにくい”のがこの大還元です。
簡単に言うと、”2桁以上の割り戻し”が大還元と言います。
しかしそれでは何の事か分からないと思うので、また、文章だと説明も理解も難しいので
動画を作成しました。
22533÷259にチャレンジします。
後半は上記の割り暗算の説明もしています。
※例のごとく左手でiPhoneを持ちながらのそろばんです^^;
細かいことは見逃してください^^;
という事で
・桁が増え
・片落としを覚え
・割り暗算を活用し
・大還元が出てくる
着実に上級者に向けての布石が打たれている5級でした。